
DRAFT COPY

A Guide to GARA

May 2000*

* Please check http://www.mcs.anl.gov/qos/ for the latest version of this document.

DRAFT COPY2

Contents
Introduction..3

Resource Managers ...5
Differentiated Service Resource Manager..5
DSRT Resource Manager ...6
DPSS Resource Manager ..6
Future Resource Managers..6
The Gatekeeper and Communication with Resource Managers..7
The Gatekeeper & Gatekeeper Service...7
The GARA API ...7
High-Level APIs..8
The End-to-End Network Reservation API..8
Other High-Level APIs ...9
Reading more about GARA..9
Documentation...9
Technical Papers..9
Contact Information ..10

DRAFT COPY 3

Note: Before you read about programming with GARA, you should have at least a passing
familiarity with Globus. You can learn more about Globus at http://www.globus.org. This guide
gives an overview of the GARA architecture. If you need information on programming GARA,
please see the Programmers Guide to GARA. If you need more information about installing and
using GARA, please see the Administrators Guide to GARA. If you would like more information
about the research being done with GARA, please see the papers available at the Globus web
site.

Introduction
The GARA architecture provides programmers with convenient access to end-to-end quality of
service (QoS) for programs. To do so, it provides mechanisms for making QoS reservations for
different types of resources, including computers, networks, and disks. A reservation is a
promise from GARA that an application will receive a certain level of service from a resource.
For example, a reservation may promise a certain bandwidth on a network or a certain
percentage of a CPU.

The GARA architecture is defined as a layered architecture with three levels of APIs and one
level of low-level mechanisms:

Note that ÒGARAÓ refers to two things: the ÒGARA Architecture,Ó which refers to the entire
diagram above, and the ÒGARA API,Ó which is the API for working with a single reservation.

The GARA API has two interesting advantages. First, it allows you to make reservations either
in advance of when you need them or right at the time that you need themÑan immediate

High-Level APIs
Adds end-to-end reservation mechanisms for
networks, by making multiple reservations.

GARA API
Adds ability to make remote, authenticated (GSI)
reservations

Local Reservation API
Makes reservations with diverse resource types;
within single trust domain.

Resource Manager
Controls admission and enforces reservations for
particular resources.

Figure 1 − GARAÕs layered architecture

DRAFT COPY4

reservation. Second, you use the same API to make and manipulate a reservation regardless of
the type of the underlying resource, thereby simplifying your programming when you need to
work with multiple kinds of resources.

The GARA API can be considered a remote procedure call mechanism to communication with a
resource manager. A resource manager controls reservations for a resource: it performs
admission control and controls the resource to enforce the reservations. Some resources already
have the ability to work with advanced reservations, so the resource manager is a simple
program. Most resources cannot deal with advanced reservations, so the resource manager tracks
the reservations and does admission control for new reservation requests. Much of the research
in GARA has focused on building useful resource managers.

It is important to understand how this remote procedure call works:

As this figure demonstrates, when a program uses the GARA API to communicate with a
resource manager, the communication does not happen directly, but happens through the
assistance of the Globus gatekeeper. The gatekeeper performs three important service:
authentication, to verify the identity of the person making the reservation, authorization, to verify
that the person is allowed to make a reservation, and finally, the launches the gatekeeper service
to handle the communication with the resource manager.

This figure demonstrates an important aspect of GARA: in order to make and use a reservation,
you will need to have a Globus gatekeeper installed with a gatekeeper service properly
configured, you will need to have a resource manager running, and you will need to have any
underlying resource management tools installed. For example, if you wish to make reservations
for CPU reservations, youÕll need the gatekeeper, the DSRT resource manager, and the DSRT
scheduler process.

We will discuss each of these pieces of the GARA architecture in turn.

GARA-enabled Application
Uses the GARA API to request
reservations from a resource
manager.

Globus Gatekeeper
Controls remote access to a
resource manager by performing
authentication and authorization

GARA Gatekeeper Service
Invoked by the gatekeeper to
communicate directly with a
resource manager, by using the
LRAM API.

Resource Manager
Performs admission control,
monitoring of reservations, and
control of underlying resource.

DRAFT COPY 5

Resource Managers
Currently, GARA provides three different resource managers:

• A differentiated services network resource manager to provide quality of service over a
network.

• A CPU resource manager that uses the Dynamic Soft Real-Time (DSRT) scheduler1 for
controlling scheduling for a processes.

• A DPSS resource manager that allows exclusive access to a DPSS server.

In the near future, new resource managers will be created to work with other resource types.

A resource manager has four important jobs:

• Admission Control: A resource manager decides whether or not each reservation can be
accepted.

• Resource Configuration: A resource manager configures the underlying resource (such as
routers on a network) to ensure that each reservation actually receives the quality of service
that it request.

• Monitoring: A resource manager observes the underlying resource while a reservation is
active. This monitoring can provide feedback to the user of the application, such as warnings
that the reservation is insufficient or too large.

• Reporting: Resource managers (optionally) report the current state of the resource manager
into the Metacomputing Directory Service, an LDAP directory. The information that is
reported includes the total amount of the resource that can be reserved (e.g. 50 Mbps) and a
list of the reservations that have been already made.

Differentiated Service Resource Manager

The differentiated services resource manager provides reservations for network bandwidth using
differentiated services. Differentiated Services is well described elsewhere2, but we will provide
a brief review here.

Differentiated Services, or diffserv, is a relatively simple method for providing different types of
service to packets in a network. In networks without diffserv, all packets are treated equally
poorly: although the network makes its best-effort to deliver the packets, there is no guarantee
that packets will arrive at their destination in a timely fashion, or even a guarantee that they will
arrive at all. While such best-effort networks have served us well for a long time, some programs
prefer better guarantees than that.

1 DSRT was produced independently by the MONET group at the University of Illinois at Urbana-Champagne.
Although DSRT has been included in the GARA distribution, you can obtain the latest version and information
about DSRT from: http://cairo.cs.uiuc.edu.
2 A good starting point for learning about differentiated services is at the home page for the IETF Differentiated
Services Working Group: http://www.ietf.org/html.charters/diffserv-charter.html.

DRAFT COPY6

Diffserv provides guarantees by marking each packet with a per-hop behavior (PHB), which
indicates how the packet is to be treated. There are very few PHBs that have been created: it is
not the case that each reservation has a unique marking, but that reservations are collected into
aggregates, and each aggregate is treated as a whole. For example, one PHB which is used by
GARA is the expedited forwarding (EF) PHB. In a router, all packets that are marked as EF as
forwarded on the network before any other kinds of packets, up to some limit. If there is careful
end-to-end control, EF can provide programs with assurances that their packets will get through
the network quickly and with low delay.

GARA uses diffserv with EF to provide network reservations. The total amount of EF traffic is
limited, so that GARA can be sure that the applications with reservations actually receive the
bandwidth that they have reserved.

Currently, GARA works with Cisco routers, which are configured with scripts that use telnet.
Although GARA currently relies on Cisco routers, it is very easy to replace just the small
configuration scripts in order to use GARA with other underlying router types.

DSRT Resource Manager

The Dynamic Soft Real-Time (DSRT) CPU scheduler provides real-time scheduling for CPU
processes. In itÕs general form, an application can reserve x milliseconds of time for every y
millisecond time chunk. For example, an application may request a block of 70ms out of every
100ms. While DSRT is highly configurable and lets users select both x and y, GARA only allows
users to select a percentage, such as 70% of the CPU. GARA selects y to be 1000ms and selects
x appropriately from the percentage.

The complete DSRT distribution has been included with GARA, and more documentation is
available there.

DPSS Resource Manager

GARA can provide reservations for the Distributed Parallel Storage Server. Currently, DPSS
support is limited to providing exclusive access to a DPSS server. Support for DPSS is in an
early stage.

Future Resource Managers

In the near future, we expect that GARA will provide resource managers for other types of
underlying resources. In particular, support for the PBS and/or Maui job schedulers will likely be
added by Fall 2000, and support for the GRIO disk reservation system by the end of 2000. There
are also tentative plans to allow support for reserving graphic pipelines.

DRAFT COPY 7

The Gatekeeper and Communication with
Resource Managers

The Gatekeeper & Gatekeeper Service

The gatekeeper is a standard Globus component that provides authentication and authorization.
All requests that come into the gatekeeper are authenticated and authorized, then forwarded onto
a gatekeeper service, which is a program that is launched every time a request comes in. The
gatekeeper service forwards the request to the appropriate resource manager and quits when the
request has been fully handled.

At first glance, this may seem like an inefficient model since authentication and authorization
could simply be built into the resource manager. However, this model has three advantages:

1. The gatekeeper can provide authentication and authorization for different services. Currently,
in addition to the gatekeeper service, it also serves the Globus Resource Allocation Manager
(GRAM).

2. Separating the gatekeeper service from the gatekeeper simplifies the gatekeeper. While the
gatekeeper runs as root, it runs the gatekeeper service as the user who is making the request.
Thus, separating out the service reduces the amount of code that runs as root.

3. The resource manager can be focused on reservations and interfacing with the resource, and
does not need to deal with authentication.

The gatekeeper service use the Local Resource Allocation Manager (LRAM) API to
communicate with the resource manager.

The GARA API
The GARA API provides a simple, uniform interface for making advance reservations for any
type of supported resource. The API provides functions for creating, modifying, binding
(claiming) canceling, and monitoring reservations.

Although the API is as uniform as possible, different resources require different parameters. For
instance, a network reservation requires a bandwidth, while a CPU reservation with DSRT
requires the percent of the CPU that is desired. To accommodate these different needs within a
single API, the create function call accepts an Resource Specification Language (RSL) string to
specify the parameters for a single reservation. For example, a network reservation might like
look:

&(reservation-type=network) (start-time=959096044) (duration=3600)
(endpoint-a=128.135.11.40) (endpoint-b=128.135.11.90)
(bandwidth=1000) (protocol=tcp)

DRAFT COPY8

When a reservation is made, GARA provides the calling program with a reservation handle. This
is a unique string that can be used to refer to the reservation in future API calls. While programs
should consider the reservation handle to be opaque, it is merely a string that can be saved to
disk, printed out, and passed to other program. Therefore, a reservation may be made well in
advance of the time that it is used by a program that will not be using the reservation, then
provided to the program that will actually use the reservation.

Because a reservation can be made in advance, it is not possible to always know all of the
information that is needed to make the reservation active. For instance, a CPU reservation
requires a process ID, while a network reservation requires port numbers, which are often not
known in advance. Therefore, the GARA API requires that programs bind (or claim) their
reservation before using by providing this information.

One reservations have been made, they can be modified. It is possible that a reservation cannot
be modified, because of insufficient availability, but if a modification attempt fails, the original
reservation remains in place.

Reservations can also be monitored through two mechanisms: polling and callbacks. Programs
may request the status of a function at any time with a function call. In some situations, a more
efficient mechanism is for the application to provide callback function. Whenever the state of a
reservation changes (begins, ends, etcÉ) the callback function will be automatically called.

Monitoring can provide two types of information. The first type is information about the timing
of the reservation: when it begins and ends. The second type is information about the quality of
the reservation. For instance, network reservations may be informed when it is noticed that the
reservation is too small to meet the programÕs actual bandwidth.

For more information about the GARA API, please see the Programmers Guide to GARA, which
can be fond at the GARA web site: http://www.mcs.anl.gov/qos/.

High-Level APIs
Because GARA provides a uniform API for working with reservations for different types of re-
sources, it is relatively straightforward to build higher level APIs with more functionality than
the vanilla GARA API. These higher level APIs can make it significantly easier to build
applications.

The End-to-End Network Reservation API

The End-to-End Network Reservation (EENR) API assists users in coordinating network
reservations that span multiple domains. To make an end-to-end network reservation, one
reservation must be made in each domain that the network traffic will go through. When dealing
with small experimental testbeds, this is generally not a difficulty. However, when working with
multiple domains, it is difficult and error-prone for a programmer to decide where the

DRAFT COPY 9

reservations need to be made. Therefore, the EENR API exists to simplify this task for
programmers.

Currently, the EENR API is at an early stage of development, although it does work. Future
development of the EENR API may be extensive, or it may be a thin shim for interacting with a
bandwidth broker such as the one being specified by the Internet 2 QBone Bandwidth Broker
Work Group.3

Other High-Level APIs

We are currently developing a high-level API to assist users that wish to make numerous
simultaneous reservations, a task we refer to as co-reservation. A co-reservation agent has three
main tasks:

1. Discover which resources can be used to satisfy the users request. Usable resources may be
defined in part by which resources will work (e.g. the user needs a Solaris 2.7 machine) and
by when reservations are available (e.g. is the machine available between 2 and 5pm on
Thursday?)

2 . Make the reservations. This step may require a certain amount of backtracking if the
resources are no longer available.

3. Monitor the reservations and inform the user when the reservations are available. In addition,
if reservations become unavailable (because of a resource outage or because a reservation is
preempted) the co-reservation agent needs to go back to steps 1 and 2.

There is not currently a co-reservation agent available for GARA, but it is under active
development.

Reading more about GARA

Documentation

More documentation about GARA is available in two companion documents: the Programmers
Guide to GARA and the Administrators Guide to GARA. Both of these documents can be found
at the GARA web site: http://www.mcs.anl.gov/gara/.

Technical Papers

Several technical papers have been written about the design of GARA and experiments that have
been done with GARA. These papers include:

3 http://qbone.ctit.utwente.nl/BBroker/

DRAFT COPY10

A Quality of Service Architecture that Combines Resource Reservation and Application
Adaptation, by Ian Foster, Alain Roy, and Volker Sander. Published in the Proceedings of the
Eighth International Workshop on Quality of Service (IWQoS 2000), June 2000.

A Differentiated Services Implementation for High-Performance TCP Flows, by Volker Sander,
Alain Roy, and Linda Winkler. Published in the Proceedings of the TERENA Networking
Conference (TNC 2000), May, 2000.

These and other papers can be found at the GARA web site: http://www.mcs.anl.gov/gara/.

Contact Information
For more information about GARA, you can refer to the GARA web page:
http://www.mcs.an.gov/qos/.

For technical information about GARA, as well as information about collaborations and plans for
future work, you should contact:

Ian Foster(foster@mcs.anl.gov)
Alain Roy (roy@mcs.anl.gov)
Volker Sander(sander@mcs.anl.gov)

